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ABSTRACT

A local-remote telerobot system for single and

dual-arm supervised autonomy, shared control,

and teleoperation has been demonstrated. The

system is composed of two distinct parts: the local

site, where the operator resides, and the remote

site, where the robots reside. The system could

be further separated into dual local sites commu-

nicating with a common remote site. This is valu-

able for potential space missions where a space

based robotic system may be controlled either by

a space based operator or by a ground based op-

erator. Also, multiple modes of control integrated

into a common system is valuable for satisfying dif-

ferent servicing scenarios. The remote site single

arm control system is described and its parameter-

ization for different supervised autonomous con-

trol, shared control, and teleoperation tasks are

given. Experimental results are also given for se-

lected tasks. The tasks include compliant grasp-

ing, orbital replacement unit changeout, bolt seat-

ing and turning, electronics card removal and in-

sertion, and door opening.

I. INTRODUCTION

Supervised autonomous control, shared con-

trol, and teleoperation may be utilized for Space

Station Freedom robotics applications. In teleop-

eration, trajectory points generated by an opera-

tor's motion of a hand controller are continuously

sampled and communicated to a robot to track. In

supervised autonomous control, autonomous com-

mands axe generated and then sent for execu-

tion on the robot. Trajectories are generated au-

tonomously by specifying segment endpoints and

trajectory parameters. The autonomous com-

mands can be saved, simulated, and/or modified
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before sending them to the remote site for execu-

tion. Shared control is the merging of autonomous

and teleoperation control. For example, the op-

erator could specify the trajectory with the hand

controller and the autonomous system could con-
trol the contact forces with the environment.

The planned baseline telerobotics capability

for the Space Station is teleoperation with a Space

Station based operator. Supervised autonomous

control and shared control could provide valuable

additional capability. Space Station based control,

where the operator resides on the Space Station,

could utilize supervised autonomy, shared control,

or teleoperation. For ground (Earth) based con-

trol, there is expected to be an approximately

8 second round trip time delay for commands to

the Space Station. Laboratory experiments in-

dicate that time-delayed ground based control of

Space Station robots can be safely achieved using

supervised autonomous control. With such a sys-

tem there would be dual local sites, one on Earth

and one on the Space Station, communicating with

a common remote site.

The basic architecture of the system provides

a remote site capability with simultaneous multi-

ple sensor based control and a local site capability

which can generate commands and parameteriza-
tion to send to the remote site. The Generalized

Compliant Motion with Shared Control (GCMSC)

[1] task primitive provides the remotes site system
multi-sensor based control. The User Macro In-

terface (UMI) [2, 3] provides the local site task

description and command sequencing. The uti-

lization of sensors, both real and virtual, enhances

task execution capability both by providing alter-

native approaches for executing a task and by mak-

ing task execution more robust. A very simple



robotic system might have purely position control

of a robot from a trajectory generator. Adding a

hand controller allows the operator to perform po-

sition teleoperation. A force-torque sensor makes

force/compliance control possible and therefore ro-
bust contact tasks. A virtual force field sensor can

aid the operator during teleoperation to keep the

robot away from joint limits and objects.

A task execution primitive is a function which

controls a manipulator to perform the task de-

scribed by its input parameter set. It generates the

desired setpoints and performs the required con-

trol. The parameter list is the interface between

a higher level task planning system and task exe-

cution. The planning system only needs to know

how to describe the desired behavior of execution

by setting the input parameters of the task primi-
tive.

III. CONTROL ARCHITECTURE OF

THE PRIMITIVE

The GCMSC primitive provides six sources of

robot motion which can be used individually or si-

multaneously. These sources of motion have two

basic types: nominal motion trajectory generator

and sensor based motion. The trajectory generator

provides a feedforward Cartesian nominal position

Xd of the NOM frame. Each of the sensors pro-

vides a perturbation to the nominal position of the

NOM frame and these are all merged at the current

NOM frame and the result is integrated with the

past cumulative sensor based motion. The virtual

restoration springs motion takes the integrated cu-
mulative sensor based motion and tries to reduce

it. The Generalized Compliant Motion control ar-

chitecture is similar to position based impedance

control [4, 5, 6, 7, 8].

The paper will focus on the remote site

GCMSC control and parameterization for specific

tasks as well as give experimental results. The

GCMSC primitive [1] and UMI [2, 3] have been

described in previous publications. The paper is

organized as follows. Section II discusses the in-

put parameter set of the primitive and section III
describes the control architecture. Motion control

is described in section IV, monitoring and status

reporting in section V, and command results in
section VI. Section VII describes the implementa-

tion environment and section VIII discusses spe-

cific task parameterizationand gives experimental

results. Section IX describes new developments

which extend the technology. Section X gives con-

clusions.

II. INPUT PARAMETER SET

The input parameter set is composed of five

parameter types: system, trajectory, fusion, sen-

sor, and monitor. Sensors generally have control

and monitoring parameters. The addition of a sen-

sor would normally require the addition of sensor

and monitor input parameters for that sensor. The

parameters are described throughout the remain-

der of the paper and are printed in bold letters.
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The motion is programmed using the following

kinematic ring equation.

trBase • trTn • trNom • trDel • trDrive

= trBase • trTnDest • trNom (1)

The WORLD frame is a fixed coordinate frame.

trBase is the constant transform from the

WORLD frame to a frame fixed in the manip-

ulator's fixed first link, BASE. trTn is the vari-

able transform from BASE to a frame fixed in the

terminal link of the manipulator, TN. This trans-

form changes each sample interval during control

and is computed based on the results of all other

inputs, trNom is the constant transform from
the TN frame to the frame in which Cartesian in-

terpolated motion will occur, NOM. trDel is the

variable transform which has the integration of all
sensor based motion, trDrive is the variable trans-

form which provides Cartesian interpolated motion

[9]. This transform is initially computed to satisfy
the initial conditions of the transforms in the ring

equation and is interpolated to the identity trans-
form at the end of the nominal motion, trTnDest

is the constant transform used to specify the nom-

inal destination of the TN frame (is the expected

value of the trTn transform at the end of nominal

motion). At each sample interval, the trajectory

generator calculates trDrive, sensor based motion
calculates trDel, and then trTn is computed by

solving equation 1. Inverse kinematics computes



the joint anglesequivalentto trTn and the robot

controller servos the manipulator to these joint an-

gles.

Most of the sources of input can specify their

inputs in a coordinate frame specific to their func-

tionality; nominal motion in NOM, teleoperation

in TELEOP, force control in FORCE, etc. This is

useful because the inputs may be most effectively

specified in separate frames. For example, see the

door opening task in Section VIII.

There are two time segments of motion dur-

ing the execution of GCMSC: the nominal motion

segment and the ending motion segment. When

the primitive starts, it executes the nominal mo-

tion segment with the specified Cartesian interpo-

lated motion and all other sensors. Motion stops

if a monitor event is triggered or Cartesian in-

terpolated motion completes. If the nominal mo-

tion segment completes normally, then the end mo-

tion segment begins. Exactly the same control oc-

curs except there is no Cartesian interpolated mo-

tion; only the sensor based motion is active. But,

whereas during the nominal motion segment the

termination conditions were not being tested, they

are tested during the ending motion and the mo-

tion can stop on a monitor event, time, or a ter-

mination condition. The ending motion is needed

after the nominal motion segment to relax forces

built up due to the nominal motion. Also, testing

for ending conditions may not be desired until the

nominal task is complete.

IV. MOTION CONTROL

The general architecture for control in

GCMSC has been described above. The control

for the individual inputs will be described in this
section.

IV.A. Trajectory Generator

Trajectory generation is done utilizing the

RCCL [10] trajectory generator. The trDrive

transform is initially given by

trDrive = (trTnlnit • trNom) -1

trTnDest • trNom (2)

tial value to the identity transform at the end of

the motion. The interpolation is controlled by the

input parameters timeVelSel, timeVelVal, and
accTime, timeVelSel selects whether to finish

the motion in a specified time or with a specified

velocity, tlmeVelVal is the time or velocity to ex-

ecute the motion in. accTime is the time to ramp

up to maximum velocity.

IV.B. Force Control

Force control is implemented independently in

each degree of freedom of the Cartesian force con-

trol frame FORCE. The control modifies the po-

sition setpoint to control the forces [11, 12]. The

result of force control each sample interval is the

perturbation transform trDelFc. The first step

of force control during a sample interval is the

projection of forces I from the force-torque sensor

frame to the SENSE frame (trSense is the trans-

form from the NOM frame to the SENSE frame).

A 6 DOF wrist force-torque sensor supplies forces

and torques along and about the axes of the SEN-
SOR frame centered in the force sensor. These are

then projected to equivalent forces in the TN frame

using rigid body force transformations. The load

(the complete composite body beyond the force

sensor) forces due to gravity are then computed.
The mass and center of mass of the load with re-

spect to the TN frame are given in the massProp

input parameter. The current TN frame orienta-

tion with respect to the gravity vector is used with

the load mass properties to determine the grav-

ity load forces in the TN frame. These are then
subtracted from the total sensed forces in the TN

frame. The resulting forces and torques are those

due only to contact and are then projected to the
SENSE frame. The forces in the SENSE frame are

then passed through a filter which reduces their

magnitude by the values in the input vector pa-

rameter deadZone (if one of the force magnitudes

is initially less than the deadZone value, then it is

set to zero). The deadZone filter is useful to reduce

drift due to inaccuracies in the mass properties of
the load.

Force control is calculated in the FORCE

frame using the forces projected into the SENSE

where trTnInit is the initial value of trTn.

trDrive is then linearly interpolated from this ini-
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ain this paper the term forces generally implies a 6 vector

of both forces and torques



frame. (trForce is the transform from the NOM

frame to the FORCE frame). The FORCE and

SENSE frames will usually coincide but there are

cases where they may be different, such as leveling

a plate on a surface where the SENSE frame is at

the center of the plate and the FORCE frame is at

the point of contact. If the SENSE and FORCE

frames were both at the point of contact, then no
moments would be felt and therefore no rotation

due to force control would occur since the force line

of action would be through the control frame.

The selVectFc selection vector selects which

of the 6 DOF of the FORCE frame are to have force

control. In these degrees of freedom, the contact

forces which were projected from the TN frame to
the SENSE frame are subtracted from the six set-

points in the forceSetpoints vector input param-

eter. The resulting force errors axe then multiplied

by the constants in the forceGains vector input

parameter to produce a differential motion vector

of six perturbations in the FORCE frame, three

translations and three rotations given by

d! = (df=,d!v, dfz,6!x, Sfv,51= ) (3)

The magnitudes of the elements of the t/! vector

are then limited. The maximum magnitudes of

the t_! perturbations per sample interval are the

velocity limits given in the maxForceVel input

parameter multiplied by the sample interval.

The FORCEtrDeIFc transform is a differential

translation and rotation transform with elements

given by _ [9]. The trDelFc transform is then
transformed to the NOM frame, trDelFc with re-

spect to the FORCE and NOM frame are related

by the following equation.

NOMtrDelFc. trForce = trForce

F°RCEtrDelFc (4)

The trDel transform of equation 1 is then updated

with the perturbation due to force control with

trDel = N°MtrDelFc. trDel (5)

Premultiplication is required rather than postmul-

tiplication because the motion is with respect to
the NOM frame.

IV.C. Dither Sensor Control

Dither signals can be used to perturb the mo-
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tion independently in each degree of freedom of

the DITHER frame. Presently only a triangu-

lar waveform is available although other waveforms

will be implemented such as sinusoidal and square.

Dither is useful to overcome stiction, e.g., when

pulling a pin out of a hole. The magnitude and

period of the dither waveforms for each DOF of

the DITHER frame axe given in the input parame-

ters ditherMag and dltherPerlod. As with force

control, the inputs in each degree Of freedom are
elements of a different[altranslation ana rotation

transform, trDelDt which is transformed to the

NOM frame in the same manner as for trDeIFc.

The trDel transform then updated with the per-
turbation due to the dither waveforms with

trDel = N°MtrDelDt • trDel (6)

IV.D. Teleoperation Sensor Control

The teleoperation sensor is actually a 6 DOF

hand controller. Each sample interval the change

in joint angles of the hand controller are read

and put in a differential vector. This vector is

multiplied by the hand controller Jacobian to get

the input Cartesian motion perturbations. The

appropriate Jacobian is used depending on the

teleMode parameter to compute the Cartesian

motion with respect the the hand controller grip

which would be tool mode teleoperation, or with

respect to a frame fixed with respect to the hand

controller base, which would be used for world or

camera mode teleoperation. These perturbations
are then transformed to the TELEOP frame which

is given with respect to the NOM frame by the

input parameter trTeleop. Again, the mode de-

termines how the perturbations are transformed
to the TELEOP frame, trCamera is used for

camera mode teleop to specify the present oper-

ator viewing orientation. The details of the var-

ious modes of teleoperation are explained in [13].

The selVectTp selection vector selects which de-

grees of freedom of teleoperation inputs to include

and teleGains are weightings for the inputs. The

maxTelVel limits the rate of teleoperation inputs.

Force reflection is also available in the system.

The robot contact forces are sent to the hand con-

troller where they are reflected to forces felt by the

operator at the hand grip. Force reflection was not

used during the tasks in Section VIII.



IV.E. Joint Sensor Control

The joint sensor control provides joint limit-

ing. This prevents the arm from going into a joint

limit or singularity. Joint angle perturbations for

all the joints are computed and put into a differen-

tial vector. A joint angle perturbation is computed
with

Ao = go(ooo,   - (7)

where Ko is the gain, 0oauot is the actual joint

angle, and 0tirnit is the limit that the joint is ap-

proaching, either as a joint limit or singularity.

The differential vector is multiplied by the Jaco-

bian to get the required Cartesian motion. This is
transformed to the NOM frame and added to trDel

as is the case with the other previous sensors.

tation virtual spring. _ and 8 are selected such

that a rotation about t_ by 8 will align the selected

axis. The virtual springs orientation perturbation

is then 500 - -k, eS. The four virtual springs per-

turbation magnitudes are then limited to the mag-

nitudes given in the maxSprlngVel vector input

parameter as the force control perturbations were

limited by the maxForceVel values. The trDel

transform is then updated with the perturbations

due to virtual springs with

trDel = trans(_,do_) • trans(_,do_) •

trans(_,d,z) . rot(_,_o0)- trDel (8)

where trans(¢_, d) is a translation of d along the

axis and rot(t3, 5) is a rotation of 6 about the 6
axis.

IV.F. Virtual Restoration Springs Control V. MONITORS

The virtual restoration springs act on the

trDel transform to pull it towards the identity
transform. This reduces the accumulated motion

due to sensory inputs and causes the actual mo-

tion to approach the nominal motion. Virtual

springs are applied in the DOFs specified by the

selVectSp input parameter. Four virtual springs

are used, one along each translational degree of

freedom and one orientational spring. For the

translational DOFs, the spring lengths are equal to

the displacement vector, _, elements of the trDel

transform (trDel is a homogeneous transform with

column vectors h, 6, _i, and p"). The transla-

tional perturbations due to the virtual springs,
do, are then the spring lengths multiplied by the

translationalspring gains in the springGains vec-

tor, k',, input paramter, i.e., dsz = -k,xpx,

dov = -ko_p_, and daz = -kozp=.

Virtual springs for orientation is applied

about one axis with respect to the NOM frame.

The selection of this axis depends upon the num-

ber of orientation degrees of freedom specified in

selVectSp. The axis is _ and the angular dis-

placement about this axis is 8. If all orientation

DOFs are selected, then _ is the equivalent axis
of rotation of the trDel transform and 8 is the

equivalent angle about the axis. If no orienta-

tion DOFs are selected, then no orientation per-

turbation is applied due to virtual springs. If only

one orientation DOF is selected, then the corre-

sponding axis _, _, or _ is aligned by the ories-
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Various parameters are continuously moni-

tored during execution. The magnitudes of the

translational part of trDel and the equivalent ro-

tation of the orientational part of trDel are com-

pared against the input parameters posThresh-

old and orlentThreshold. If the values grow

larger than the thresholds, then the motion stops.

Also, the vector magnitudes of the contact forces

and torques in the FORCE frame are compared

againstforceThreshold and torqueThreshold

and motion stopsifone of them islargerthan the

threshold.Ifthe distanceto a jointlimitor singu-

larityis less than the angles in the jSafetyLimit

input vector, then motion stops.

Anther monitor is the termination condition

monitor. It is used during the end motion (see

section III). The end motion continues until all of

the specified termination conditions are satisfied or

until the time limit given by the endTime input

parameter is passed. The select input parame-
ter is a bit mask which selects which termination

conditions to test for. Any combination of ter-
mination conditions can be tested. All termina-

tion conditions relate to forces and torques in the

SENSE frame or sensor based motion specified by
the trDel transform. Each termination condition

is calculated as a moving average of data sampled
each 200 ms over a window of testTime ms. Sat-

isfaction of a termination condition means that its

magnitude is less than its associated input parame-

ter limit. The endTransErr condition is the mag-



nitude of the trDel transformi_vectorincluding

only the positiondegreeof freedom components.

The endAngErr conditionisthemagnitude ofthe

virtualrestorationspringsangulardisplacement,8,

describedabove. The endTransVel and endAn-

gVel parameters arethe rateofchange ofthe end-

TransErr and endAngErr conditions.The end-

ForceErr and endTorqueErr parametersarethe

magnitudes of the forceand torque errorvectors

in the SENSE frame includingonly the forcecon-

trolleddegreesoffreedom. The endForceVel and

endTorqueVel parameters are the rateofchange

of the endForceErr and endTorqueErr condi-

tions.

During execution of the primitive, the system

executive reports the status of execution to the

local site system. The report includes information

such as contact forces and joint angles.

VI. COMMAND RESULTS

VIII. RESULTS

Various taskshave been executed in the JPL

STELER lab utilizingthe User Macro Interfacefor

task descriptionand sequencing and Generalized

Compliant Motion with Shared Controlfortaskex-

ecution.These tasksincludecompliant grasp,or-

bitalreplacementunitremoval and insertion,bolt

seatingand turning,electronicscard removal and

insertion,and door opening. The differenttasks

utilizeddifferentcombinationsofthe sixsourcesof

motion. For each taskbelow, only the mentioned

motion sourceswere used. All distanceunitsused

below aremm, forcesareNewtons (N),and torques

are N-ram. The forceGains input vectortransla-

tiongains units are mm/N and orientation gains

units me deg/N-mm. The maxForceVei vector

has translation units of mm/sec and orientation

units of deg/sec. The springGains input vector

has three translational gains with units mm/mm

and an orientation gain with units deg/deg.

Various possible causes for the motion to stop
have been described above. When the motion

stops, the cause is returned to the local site system

along with the system status. Each possible cause

of motion termination has a unique command re-
sult code.

VII. IMPLEMENTATION

ENVIRONMENT

The remote site with the GCMSC primitive

and the local site with UMI are operational in

the JPL Supervisory Telerobotics (STELER) Lab-

oratory running PUMA 560 manipulators with six

DOF wrist force-torque sensors and servoed grip-

pers. The GCMSC primitive was written in the

C programming language using utilities from the

robot control C library (RCCL) [10]. The manip-

ulator control is multiple rate with the Cartesian

level control of the GCMSC primitive at a different

rate from the joint level servo control ...........

the Cartesian level control (all control associated

with the GCMSC primitive including trajectory

generator and sensor based motion) runs with a

10 ms sample interval and the joint servo control

has a 1 ms sample interval. Details on the hard-

ware configuration of the system can be found in

[14].
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The compliant grasp task utilized force con-

trol to both level the grippers on the grapple lug

and to adjust the position of the robot as the fin-

gers closed. The trForce transform was selected
so the FORCE frame was between the robot fin-

gers. The forceSetpoints input vector was all ze-

roes except for a force of -10 N along Z. The force-

Gains input vector was (0.02, 0.02, 0.02, 0.00003,

0.00003, 0.00003). The compliant ungrasp task

opened the gripper while using force control to null

out contact forces and virtual springs to make sure

the gripper would not drift. The forceSetpoints

input vector was all zeroes. The forceGalns in-

put vector was the same as for the compliant grasp

task. The springGains input vector was (0.007,

0.007,0.007,0.015).

The orbital replacement unit (ORU) removal

task utilized force control to pull the ORU and

attached pin out of the passive connector. The

arm carrying the ORU is shown in figure 1. The

massProp inputs were 4.87 kg at position vec-

tor (in mm) (-90.3, -4.5, 336.6) relative to the T6
frame. The trForce transform was a translation of

400 mm along the T6 Z axis. The forceSetpoints

input vector was all zeroes except for a force of

15 N along Z. The forceGains input vector was

(0.02, 0.02, 0.02, 0.00001, 0.00001, 0.00001). The

maxForceVel input vector was (30, 30, 30, 5,



Figure 1: Manipulator carrying ORU
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Figure 2: ORU removal task: solid is force along

FORCE Z; dashed is translation along FORCE Z

5, 5). Figure 2 shows the force and displace-
ment along the FORCE frame Z axis during the

task. The figure shows that the maxForceVel of

30 mm/sec limited the velocity due to force con-

trol to 30 mm/sec so that the force could not reach

its setpoint. The motion stopped on the position

monitor with posThreshold input parameter of

160 mm.

The ORU insertion task used the same param-

eters as the oru removal task except that the task

completed on the time monitor and the force set-

point along Z was -15 N. Figure 3 shows the force

and displacement along the FORCE frame Z axis

during the task.

The bolt seating task utilized Camera mode

shared control teleopertion. The teleMode pa-

rameter specified Camera mode teleoperation. The

trTeleop transform put the TELEOP frame on

the socket shaft. The forceGains input vector

was (0.03, 0.03, 0.03, 0.00003, 0.00003, 0.00003).

The bolt unscrew task used force control to

cause the bolt to turn. The trForce transform was

selected so that the FORCE frame was above the

socket. The forceSetpoints input vector was (0,

0, -5, 0, 0, 6000). The forceGains input vector

was (0.01, 0.01, 0.01, 0.00001, 0.00001, 0.00001).
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Figure 4: Electronics card insertion and removal Figure 5: Operator at local site OCS

The -5 N force kept the socket on the bolt. The

6000 N-ram torque caused the bolt rotation. The

orientThreshold input parameter of 90 degrees

caused the task to terminate after the bolt rotated

90 degrees. The bolt screw task was the same ex-

cept that a torque of-6000N-mm was used to screw
the bolt on. The task terminate either on the ori-

entThreshold of 90 degrees or on time if the bolt

would not turn any more.

Four tasks were use_l fo_ _lectronics Card in-

sertion and removal, as shown in figure 4. A real
electronics card and chassis were used in the ex-

periment. The first task was camera mode shared

control teleoperation where the operator used the

hand controller to partially insert the card into the

card slot. The operator at the local site opera-

tor control station _is shown in figure 5. Camera

mode teleoperation caused the robot to move in
the same direction relative to the cameras mounted

on the camera arm (see figure 1) as the operator's

hand moved relative to the stereo display moni-

tor. Force control with zero setpoints was used to
null out the contact forces between_ t_e card and

the slot. The teleMode parameter specified Cam-

era mode teleoperation. The trTeleop transform

put the TELEOP frame on the electronics card.

Once the electronics card was successfully

placed in the chassis slot, autonomous commands

were used to slide the card to the backplane and

seat it in the backplane. Sliding the card to

the backplane was done using force control. The

forceSetpoints input vector was (0, 0, -15, 0, 0, 0)

and the forceGains input vector was (0.01, 0.01,

0.01, 0.00001, 0.00001, 0.00001). Figure 6 shows

the translation and forces along the FORCE frame

Z axis. A larger force is needed to seat the card in

the backplane than was used to slide the card to

the backplane. To seat the card in the backplane,

the force along the FORCE Z axis was set to -60N
and the same forceGains were used. The results

are shown in figure 7. Unseating the electronics

card from the backplane is achieved by applying

a force of 60 N along the FORCE frame Z axis.

After the card breaks free of the backplane, a ve-

locity limiting filter limits the velocity using the

maxForceVel input parameters (2.5, 2.5, 2.5, 3,

3, 3). The results are shown in figure 8.

Shared control was used for the dome cleaning

task as shown in figure 9. A trTeleop transform

of 290 mm along T6 Z was selected so that the

TELEOP frame was in the middle of the pad. The

operator was given three hand controller degrees of

The forceGains input vector was (0.03, 0.03, 0.03L freedom of input - two tangential to the dome sur-

0.00003, 0.00003, 0.00003). 727 face and one about the surface normal as specified
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Figure 9: Dome cleaning task

in the selVectTp input vector (1, 1, 0, 0, 0, 1).
The FORCE frame was the same as the TELEOP

frame. The forceSetpoints input vector was (0,

0, -20, 0, 0, 0) and the forceGains input vector

was (0.02, 0.02, 0.02, 0.00012, 0.00012, 0.00002).
The 20 N force caused the pad to stay in contact

with the curved surface. When the pad was moved

so that the FORCE frame was not at the point of

contact, then the 20 N would generate a moment

and the pad would automatically rotate until the

FORCE frame was again at the contact point. In

this way, the operator could polish the dome sur-
face but could not cause motion with the hand

controller which would cause damage to the sur-

face.

The last task is the door opening task which

was done with both shared control teleoperation

and autonomous control. The door task is shown

in figure 10. For the door opening with teleoper-

ation task, the trTeleop input transform was se-

lected so that the TELEOP frame Z axis was along

the hinge axis. The trForce input transform placed
the FORCE frame at the knob where the robot

was grasping the door. The forceSetpoints in-

put vector was all zeros and the forceGains input

vector was (0.015, 0.015, 0.015, 0.00002, 0.00002,

0.00002). The operator opened and closed the door

simply by a one DOF rotation of the hand con-
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Figure 10: Door opening task

troller grip.

Figure 11: Autonomous door opening results: solid

is motion of FORCE frame; dashed is rotation of

NOM frame (hinge axis)

For the door opening with autonomous con-

trol task, the autonomous trajectory generator was

used instead of teleoperation inputs to cause the

nominal motion. The trNom input transform

placed the NOM frame such that its Z axis was

along the door hinge axis. The forceSetpoints

and forceGains input vectors were the same as

for the compliant teleoperation case above. Vir-

tual springs were necessary so that the motion due
to force control would not cause the actual mo-

tion to drift far from the reference nominal trajec-

tory. The springGalns input vector was set to

(0.007 0.007 0.007 0.015). The select termination

condition input was set to select the endAngErr

as the termination condition to monitor; endAn-

gErr was set to 0.1 deg. A relative autonomous

motion was specified to rotate the NOM frame by

30 degrees. The results are shown in figures 11 and

12. The figures show that the door was success-

fully opened 30 degrees.

!
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Figure 12: Autonomous door opening results:

forcesalong FORCE frame X (o), Y(O), and

Z(/\)axes
The value of the virtual springs is shown by

executing the same task but with the spring-

Gains input vector elements set to zero. The re-

sults are shown in figure 13. In this case the door

opened a maximum of only 21.6 deg. The maxi-

mum rotation occurred when the trajectory gener-
729
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Figure 14: Autonomous door closing: solid is mo-
tion of FORCE frame; dashed is rotation of NOM

frame (hinge axis)

ator finished. After that, the ending motion time

segment began and the door slowly began closing

due to its gravity weight. The ending condition of

0.1 deg. from the 30 deg. goal was never satisfied

so it stopped on the endTime timeout. The rea-

son that the door did not open all of the way is that

the forces in the FORCE frame caused compliant

motion to resist the nominal trajectory generator

motion and there were no virtual springs to offset

this motion.

The door opening task was followed by a door

closing task. The same parameters as for the

door opening task were used, including virtual

springs, except that the nominal motion was neg-

ative 32 deg. and different termination conditions

were used. A 32 deg. motion was used to he sure

to have at least the 30 deg. of motion needed.

The select termination condition input was set to
select the endTransVel and endAngVel as the

termination conditions to monitor; endTransVel

was set to 1 mm/sec and endAngVel was set to

0.1 deg/sec. The results are shown in figures 14

and 15. The figures show that the door was suc-

cessfully closed 30 degrees. The motion is nearly

linear until the door makes contact and is closed

at 30 deg. Then the rotation stops which triggers

the termination condition.
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IX. DUAL-ARM AND IMPEDANCE
BASED REDUNDANT ARM CONTROL

The GCMSCprimitive has been generalized

for dual-arm cooperative control teleoperation, su-

pervised autonomy, and shared control with the

Dual-Arm Generalized Compliant Motion primi-

tive [15]. It was then generalized for impedance

based control of a six DOF manipulator [13] and
then impedance based control of a redundant seven

DOF manipulator [16].

X. CONCLUSIONS

A local-remote control system with unified au-

tonomous control, shared control, and teleopera-

tion has been described. The local site generates

teleoperation and autonomous commands which

are communicated to the remote site. The remote

site uses a parameterized task primitive to execute
tasks. The execution of various tasks in the labo-

ratory demonstrates the capability of the system.
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